マルチコアに向けたCPUの進化の方向性

Single Core CPU シングルコアの性能を高めるため に効率を犠牲にしている。 コア当たりのパフォーマンスは高 いが、パフォーマンス/TDPは低い

より複雑だが電力効率の高いコ アアーキテクチャを開発する よりシンプルなコア アーキテクチャへ戻る

特定用途向けCPUコアを開発する。(汎用CPUコアとの組み合わせも)

CPUコア	CPUコア
CPUコア	CPUコア

コアはより複雑になるがパフォーマンス/TDPは高くなる。コア当たりのパフォーマンスも向上する。

CPU	CPU	CPU	CPU
Core	Core	Core	Core
CPU	CPU	CPU	CPU
Core	Core	Core	Core
CPU	CPU	CPU	CPU
Core	Core	Core	Core
CPU	CPU	CPU	CPU
Core	Core	Core	Core

シンプルコアはパフォーマンス/TDPが 高いため、大規模なマルチコア化が容 易になる。コア当たりのパフォーマンス は下がる。

GP CPU Core		SP CPU Core
		SP CPU Core
SP	SP	SP
CPU	CPU	CPU
Core	Core	Core
SP	SP	SP
CPU	CPU	CPU
Core	Core	Core

マルチメディア処理など特定用途向けの CPUコアを多数搭載する。必要なら汎用 CPUコアも組み合わせる。特定処理時のパ フォーマンス/TDPは非常に高くなる。