
 

2. Processor Architecture 

2.1. Clustered Architecture 

 This Section briefly describes the baseline clustered 
microarchitecture.  
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Figure 1. (a) Block diagram of the clustered 
microarchitecture (b) Backend detail 

 
 Figure 1 depicts the block diagram of the clustered 
microarchitecture. A high-level picture can be seen in 
Figure 1a, in which the two main parts of the processor 
are distinguished: the frontend and the clustered backends. 
The frontend reads IA32 instructions from the UL2, 
translates them into uops and stores them in the Trace 
Cache, from where they are read, decoded, renamed and 
steered to any of the backends, according to a steering 
policy. Figure 1b shows the details of one of the backends 
(a.k.a. clusters). Each of them has its own register file, 
integer and floating point issue queues and a memory 
order buffer along with a data TLB and a first-level data 
cache.  

 uOps are first handled by the dispatch logic, where the 
steering unit decides the destination cluster based on 
some policy. Once the destination cluster is decided, the 
logical output register is mapped into a free register 
belonging to that cluster and the instruction is steered. 
 After steering, instructions remain in an issue queue 
until their inputs become available, and then, they are 
executed and results are written back to the register file. 
 Special copy instructions are generated by the dispatch 
logic when an instruction requires a register value 
generated in a cluster other than the one in which it will 
be executed ([7], [17]). This copy uop is dispatched to the 
cluster generating the value and it is in charge of sending 
the data through a point-to-point link to the cluster where 
the consumer resides.  
 Data caches are distributed and a load can be steered 
to any cluster. If there is a cache miss, the UL2 is 
accessed using the memory bus and the line is written in 
the cache of the cluster where the requesting load resides. 
Store instructions are steered to a cluster according to the 
steering policy to compute the effective address, but they 
allocate a slot in all memory order buffers in order to 
disambiguate stores from subsequent loads [2]. When the 
store address is computed, it is sent through the 
disambiguation bus and copied to all clusters, so 
disambiguation can be performed locally.  
 Integer and floating point instructions leave the issue 
queue after being issued. Store instructions remain in the 
memory order buffer until commit and loads are stored in 
the memory order buffer until they are disambiguated. 
After executed, instructions send a completed signal to 
the reorder buffer and they can be committed once they 
reach the head of the buffer. 
 The monolithic implementation considered in this 
paper is the equivalent to the clustered one but without 
the need of communication and coherency among clusters 
(basically the copy instructions and the copy scheduler 
are avoided). The aggressiveness of the backends depends, 
basically, on the number of them that are implemented in 
each particular configuration. 

2.2. Power Model 

 This Section introduces both the dynamic and the 
leakage power model that we have utilized to carry out 
the experiments.  
 The dynamic power model is very similar to those 
existing in the literature [5]. Basically, an activity counter 
is associated to each functional block (e.g. register files, 
data cache, etc) and it is incremented in each block 
operation. In order to compute the energy, the activity 
counter is multiplied by its corresponding energy-per-
operation value (obtained from the physical design or an 
analytical model). An aggressive clock gating technique 
is assumed:  unused structures just dissipate 10% of their 


